

Verifiable Efficient Modular Databases

Without SNARKs

Alberto Trombetta (joint work with Vincenzo Botta, Simone Bottoni, Matteo Campanelli, Emanuele Ragnoli)

Integrity in Databases

- Databases are at the heart of our technological infrastructure
- Outsourcing them is very common
- This introduces risks:
 - “AWS, would you give me the response to this query?”
 - **But how do we know the response is correct?**
 - Arbitrary faults, malicious behaviour,...

Integrity in Databases

- Databases are at the heart of our technological infrastructure
- Outsourcing them is very common
- This introduces risks:
 - “AWS, would you give me the response to this query?”
 - **But how do we know the response is correct?**
 - Arbitrary faults, malicious behaviour,...

Verifiable Databases (VDB)

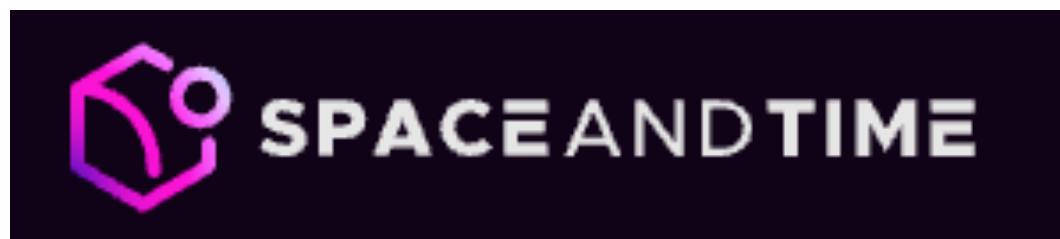
Are a cryptographic solution to this problem

Further Motivations fo VDBs

- **Implication of Verifiable Databases:** not having to trust your DB provider
- **Pipe dream** \approx every data flow from every DB API authenticated through a verifiable DB
 - Analogy: HTTPS. And its ubiquity
 - Potential outcome: information flow that is fully certified cryptographically
 - Even a partial version of the pipe dream might be useful...

Further Motivations fo VDBs

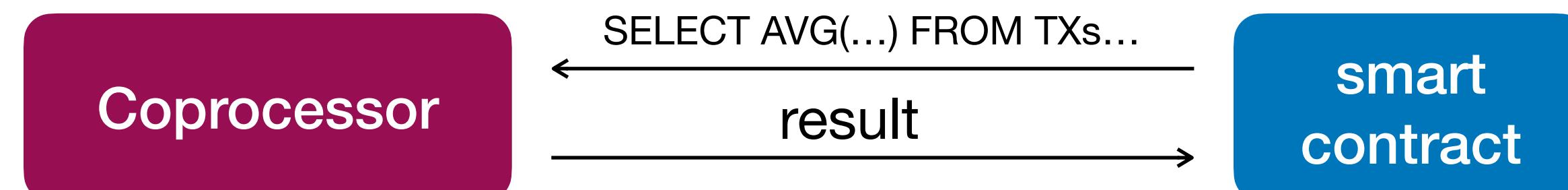
- **Implication of Verifiable Databases:** not having to trust your DB provider
- **Pipe dream** \approx every data flow from every DB API authenticated through a verifiable DB
 - Analogy: HTTPS. And its ubiquity
 - Potential outcome: information flow that is fully certified cryptographically
 - Even a partial version of the pipe dream might be useful...
- **In blockchain settings:**
 - Providing proofs for answers from ‘coprocessors’



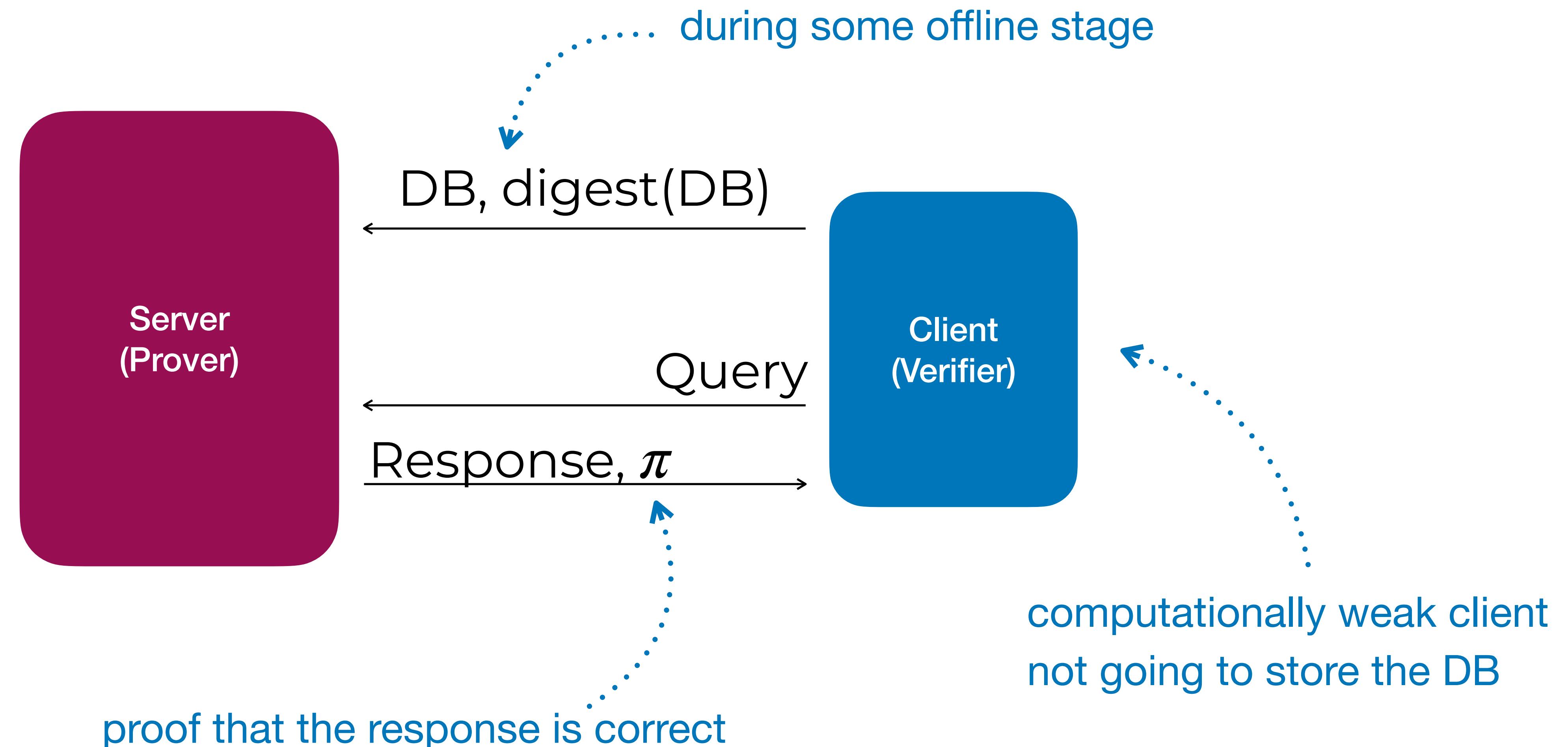
Further Motivations fo VDBs

- **Implication of Verifiable Databases:** not having to trust your DB provider
- **Pipe dream** \approx every data flow from every DB API authenticated through a verifiable DB
 - Analogy: HTTPS. And its ubiquity
 - Potential outcome: information flow that is fully certified cryptographically
 - Even a partial version of the pipe dream might be useful...
- **In blockchain settings:**

- Providing proofs for answers from ‘coprocessors’
- Coprocessor sends *SomeAnalysis(chain)* to the chain



Verifiable Databases



Desirable Features of VDBs

Efficiency-related

- Fast (Prover and Verifier)
- Publicly verifiable
 - Important to establish trust levels of data traces
- Non-interactive, with short proofs
 - Especially important in smart contracts

Desirable Features of VDBs

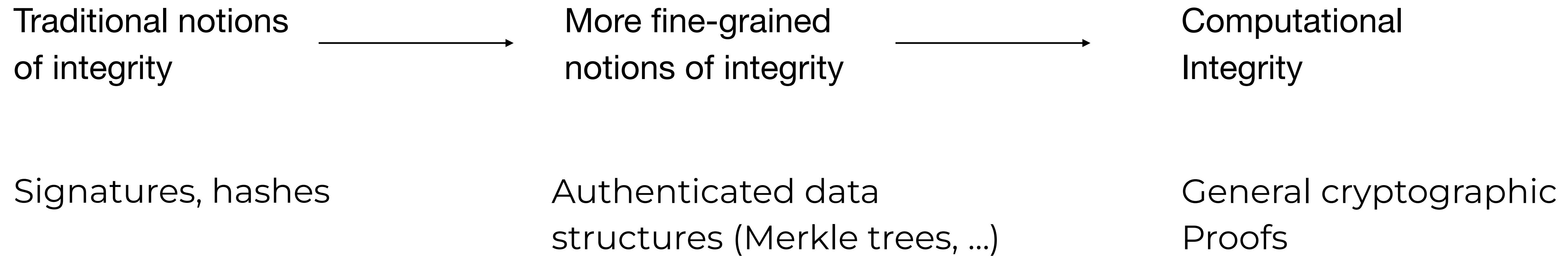
Efficiency-related

- Fast (Prover and Verifier)
- Publicly verifiable
 - Important to establish trust levels of data traces
- Non-interactive, with short proofs
 - Especially important in smart contracts

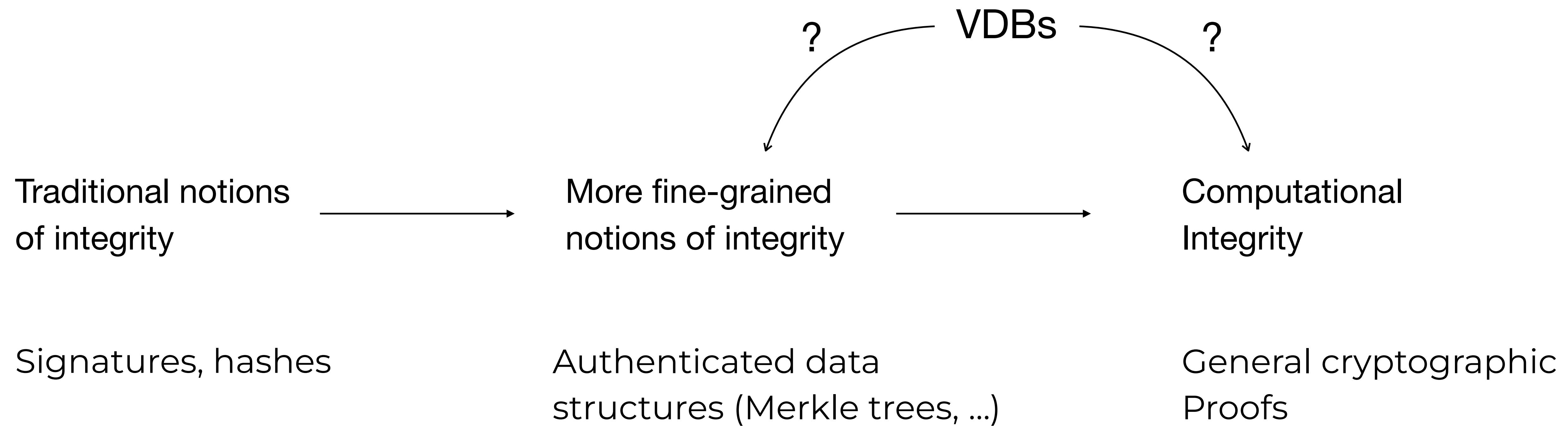
Security-related

- Based on solid cryptographic assumptions (of course)
- Simple
 - Easy auditable; easier to reason about
 - Less vulnerable
 - More maintainable; easier to patch

How Do We Build VDBs?



How Do We Build VDBs?



How Do We Build VDBs?

Both approaches are used
They lead to different tradeoffs

Traditional notions
of integrity

Signatures, hashes

More fine-grained
notions of integrity

Authenticated data
structures (Merkle trees, ...)

VDBs as ADSs

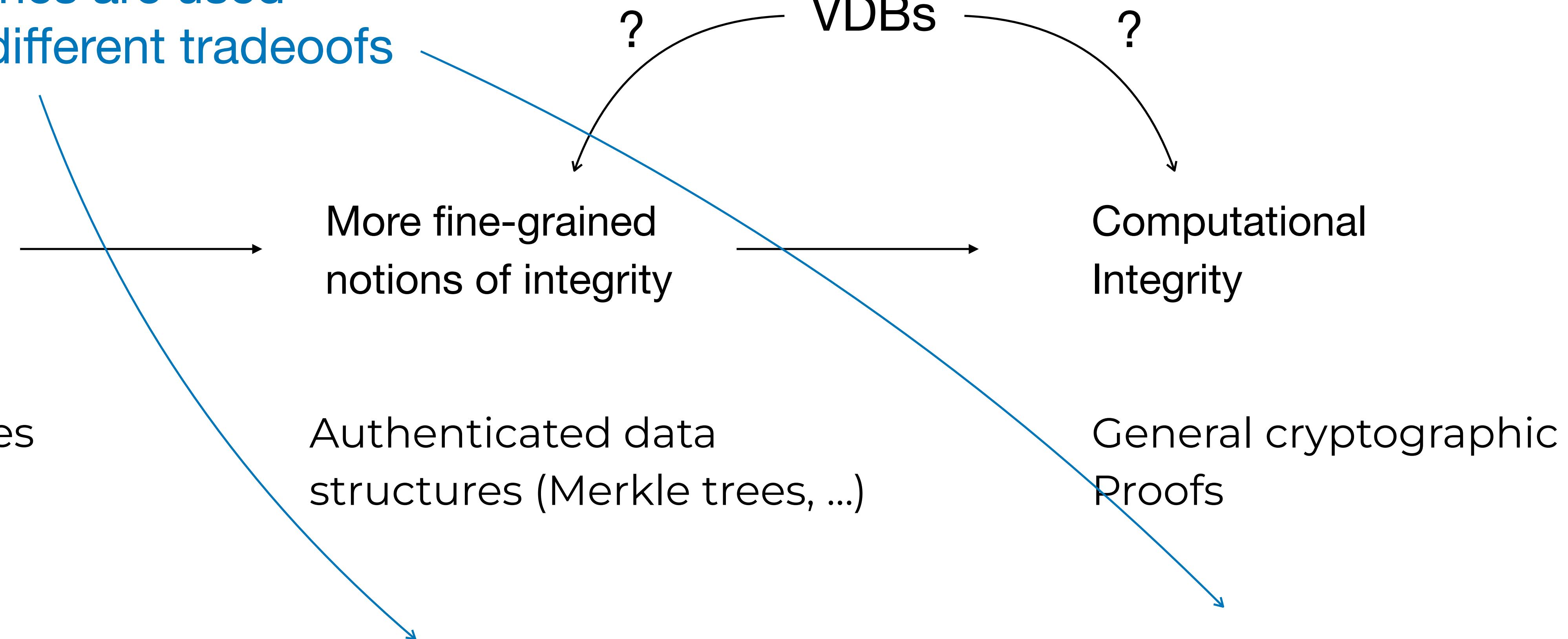
VDBs

?

Computational
Integrity

General cryptographic
Proofs

Queries as examples of
general computations



Landscape of VDBs

~2009-2015: **IntegriDB**

and - mostly - accumulators-based constructions

2017: **vSQL**

2023-2025: Lagrange Labs, Axiom,...

Expressivity

Security & Simplicity

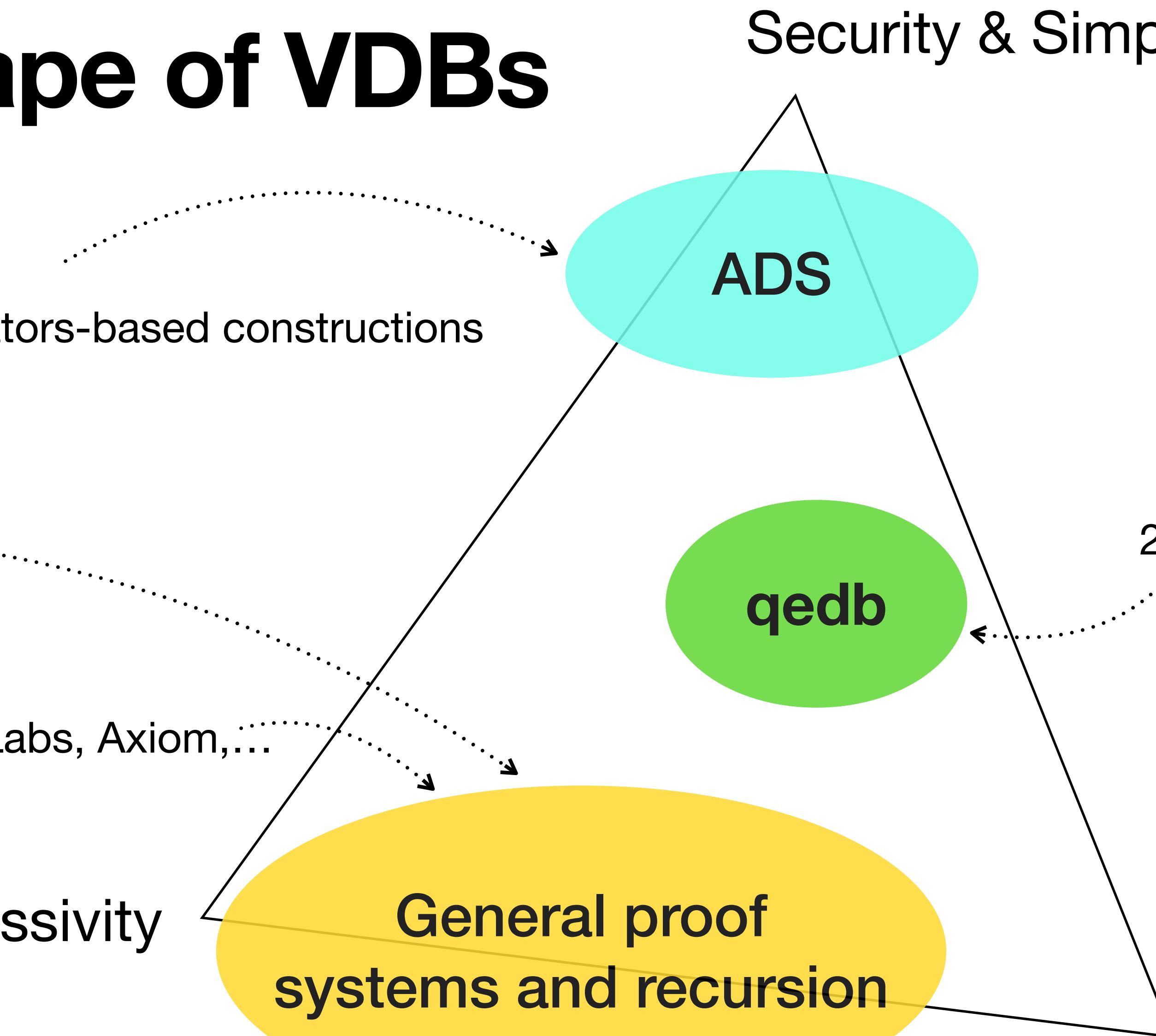
2025

Practicality

General proof
systems and recursion

ADS

qedb



Tradeoffs

General-purpose solutions

- Expressive ✓
- Can be very efficient ✓
- Fast proving time (with the right number of GPUs and investment) ✓
- Short proof size/small verification cost ✓
- Sledhammer approach to verifiable SQL ✗
- Extremely complex stack ✗
- Suboptimal developer experience ✗

Tradeoffs

General-purpose solutions

- Expressive ✓
- Can be very efficient ✓
- Fast proving time (with the right number of GPUs and investment) ✓
- Short proof size/small verification cost ✓
- Sledhammer approach to verifiable SQL ✗
- Extremely complex stack ✗
- Suboptimal developer experience ✗

Authenticated Data Structures solutions

- Simple hash-based authentication and modern accumulators ✓
- Large proof size ✗
- Preprocessing and proving is memory intensive ✗
- Constrained expressivity ✗

QEDB

- A VDB that is:

- **Highly efficient**

First scheme with **proof size independent of DB size**

Generates a proof in seconds on a common laptop
(For a 1 million row DB)

No quadratic behavior for JOINs
(through new techniques)

- **Highly expressive**

More expressive than other ADS-based approaches

- From **simple building blocks**

No general purpose SNARKs

Instead: specialized vector commitments
And accumulators

Idealized VDBs

- **SELECT C FROM T WHERE SomeCondition**

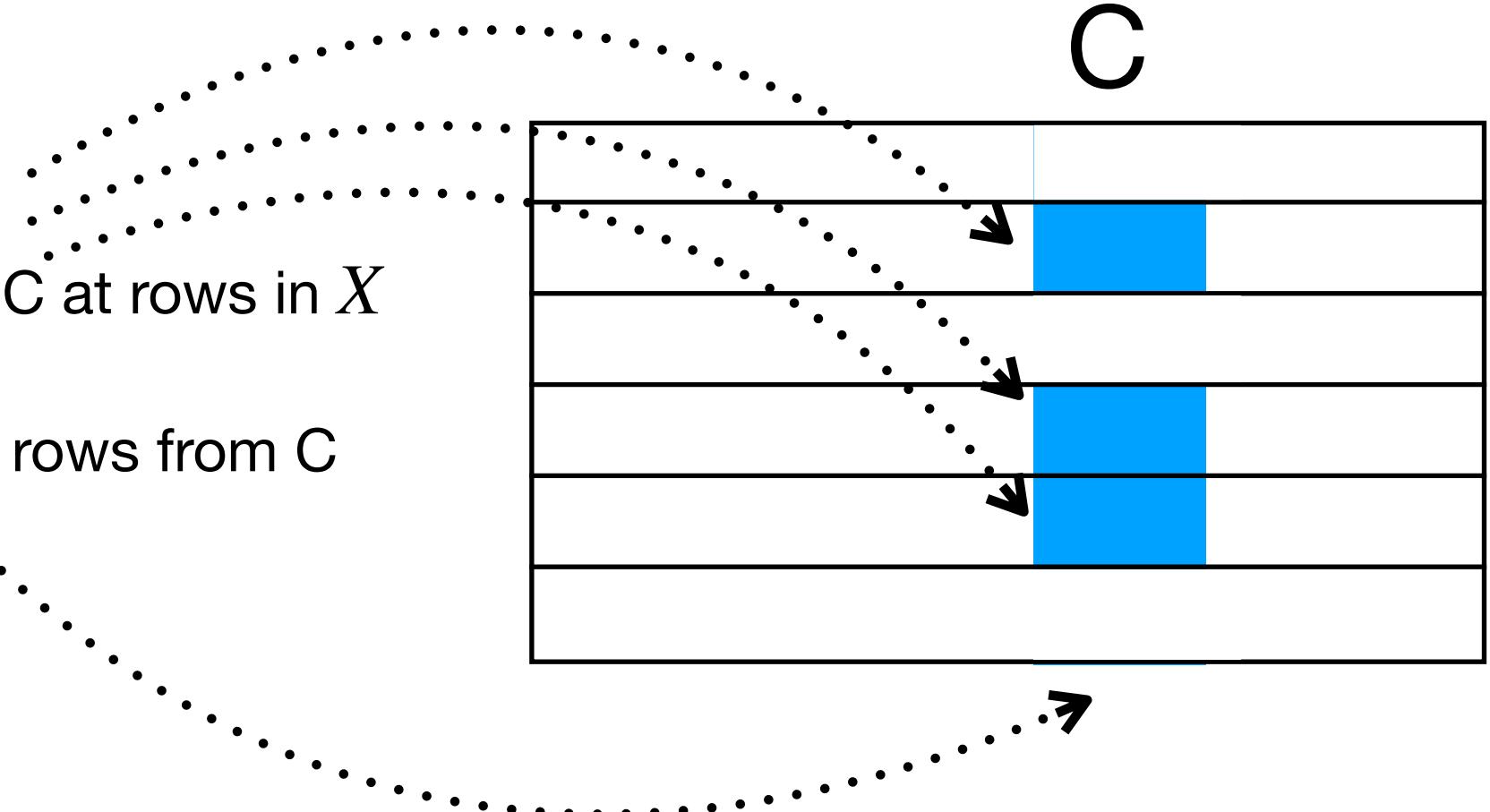
- Verifier wants to check:

- $\text{SomeCondition}(r) = \text{True} \iff r \in X \text{ (right rows?)}$
- $\forall r \in X \quad y_r = C[r] \text{ (right values?)}$

Response:

$(y_r)_{r \in X}$: claimed values of C at rows in X

X: claimed list of relevant rows from C



Idealized VDBs

- **SELECT C FROM T WHERE SomeCondition**

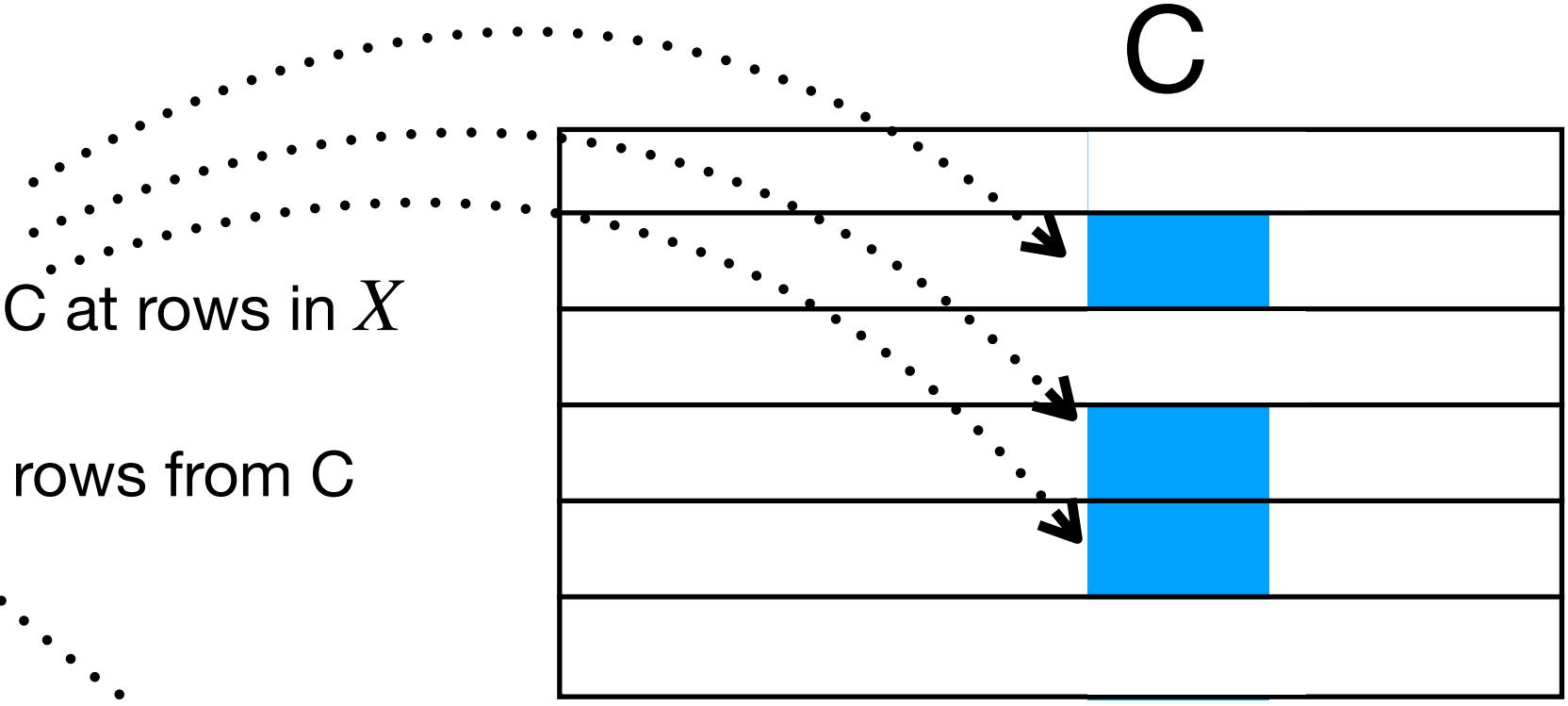
- Verifier wants to check:

- $\text{SomeCondition}(r) = \text{True} \iff r \in X$ (*right rows?*)
- $\forall r \in X \quad y_r = C[r]$ (*right values?*)
- Prover sends ‘pointers’ (handles) to sets and vectors

Response:

$(y_r)_{r \in X}$: claimed values of C at rows in X

X: claimed list of relevant rows from C



handle of vector v

X

v

handle of set X

Idealized VDBs

- `SELECT C FROM T WHERE SomeCondition`

- Verifier wants to check:

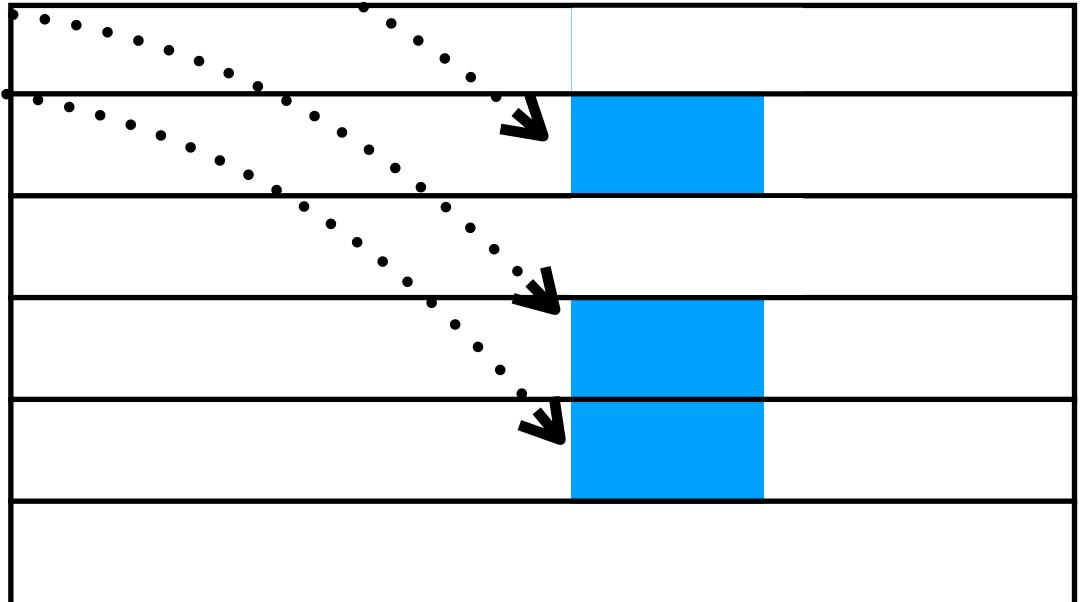
- $\text{SomeCondition}(r) = \text{True} \iff r \in X$ (*right rows?*)
- $\forall r \in X \quad y_r = C[r]$ (*right values?*)
- Prover sends ‘pointers’ (handles) to sets and vectors
- Verifier can perform special checks on handles

for example: `read?(X, v, u)` checks whether $v_X \stackrel{?}{=} u$

Response:

$(y_r)_{r \in X}$: claimed values of C at rows in X

X : claimed list of relevant rows from C



handle of vector v
 v

X

handle of set X

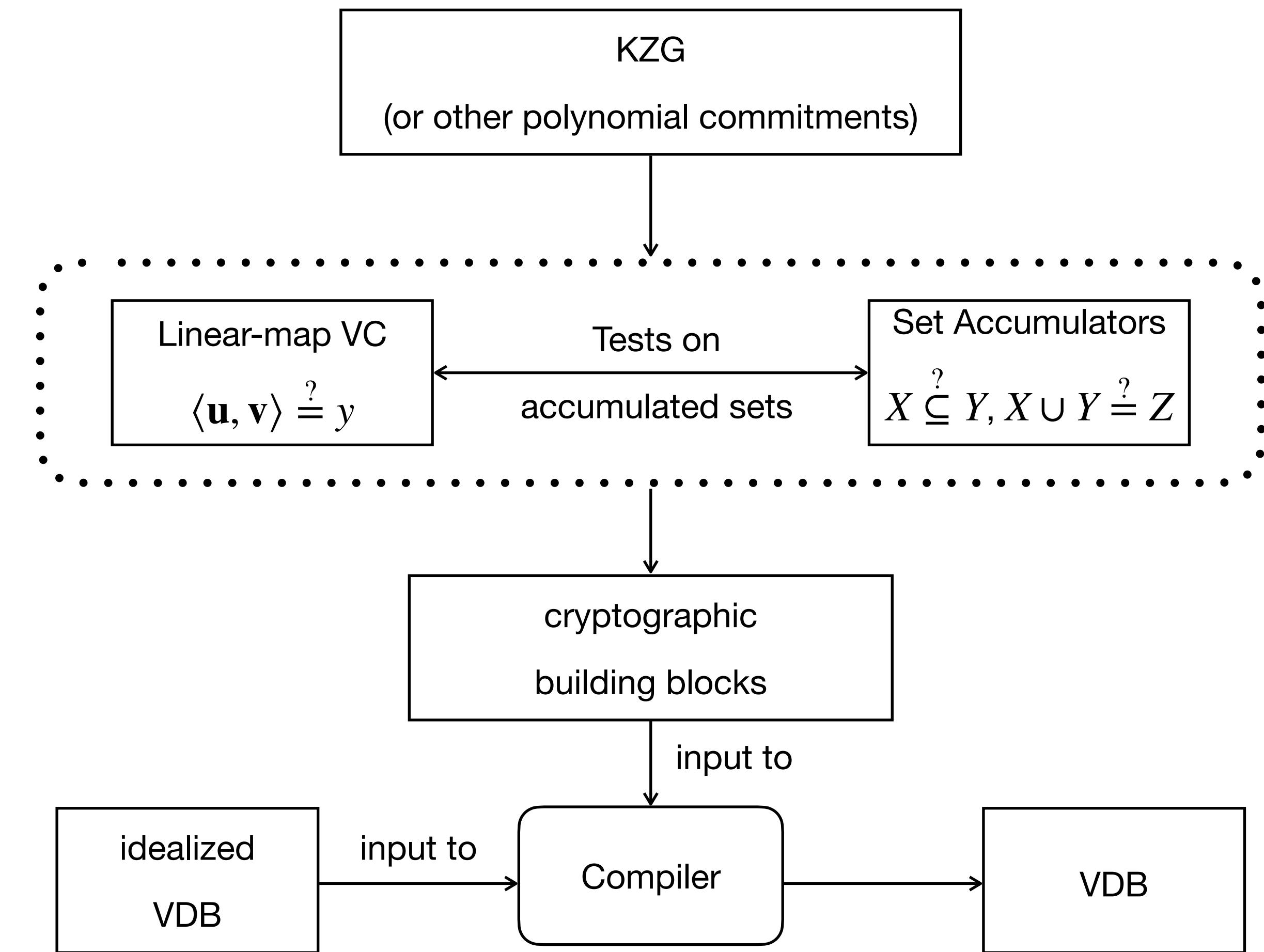
If read from v at positions in X do I get u ?

Derived Checks

<p>Tests where two slices are equal</p> $\text{eqSet}(\mathbf{u}, \mathbf{v}) \stackrel{?}{=} \text{eqSet}(\mathbf{X}_0, \mathbf{X}_1)$ <p>i.e., we test: $X_0 \stackrel{?}{=} \{j : u_j = v_j\}$</p>	<p>Let $X_+ := \{j : u_j > v_j\}$, $X_- := \{j : u_j < v_j\}$.</p> <p>Prover sends: $\mathbf{X}_0, \mathbf{X}_1$</p> <p>Verifier defines $\mathbf{\Delta} \leftarrow \mathbf{u} - \mathbf{v}$ and then checks: That $\mathbf{X}_0, \mathbf{X}_+, \mathbf{X}_-$ partition $\mathbf{*}$ (via basic set handle tests) $\mathbf{\Delta}[\mathbf{X}_0] \stackrel{?}{=} 0 \quad \mathbf{\Delta}[\mathbf{X}_+] \stackrel{?}{>} 0 \quad -\mathbf{\Delta}[\mathbf{X}_-] \stackrel{?}{>} 0$</p>
<p>Sum check within target subset</p> $\sum_{j \in \mathbf{X}} v_j \stackrel{?}{=} y$	<p>Let $\mathbf{u}_1 := (\mathbb{1}_X(1), \dots, \mathbb{1}_X(m))$, $m := \mathbf{v}$ (indicator vector for X)</p> <p>Prover sends: $\mathbf{u}_1, \mathbf{X} := \mathbf{*} \setminus \mathbf{X}$</p> <p>Verifier checks: $\mathbf{u}_1 \stackrel{?}{=} \mathbb{1}[\mathbf{X} \rightarrow 0]$ ("is it the indicator vector?") $\langle \mathbf{v}, \mathbf{u}_1 \rangle \stackrel{?}{=} y$ (checks actual sum) $\mathbf{X} \stackrel{?}{=} \mathbf{*} \setminus \mathbf{X}$</p>
<p>Pre-image check</p> $\text{eqSet}(\mathbf{u}_\alpha, \mathbf{v}) \stackrel{?}{=} \alpha^{-1}(\mathbf{v})$ <p>where: $\alpha^{-1}(\mathbf{v}) := \{j : v_j = \alpha\}, \alpha \in \mathbb{F}$</p>	<p>Verifier defines $\mathbf{u}_\alpha := \alpha \mathbb{1}$ and checks:</p> $\text{eqSet}(\mathbf{u}_\alpha, \mathbf{v}) \stackrel{?}{=} \text{eqSet}(\mathbf{u}_\alpha, \mathbf{v})$
<p>"Nullifying" test</p> $\mathbf{u} \stackrel{?}{=} \mathbf{v} \left[\mathbf{X}_0 \rightarrow 0 \right]$ <p>i.e., $\forall j \ u_j \stackrel{?}{=} v_j \cdot (1 - \mathbb{1}_{X_0}(j))$</p>	<p>Prover sends: $\mathbf{X}_0 := \mathbf{*} \setminus \mathbf{X}_0$</p> <p>Verifier defines $\mathbf{\Delta} \leftarrow \mathbf{u} - \mathbf{v}$ and then checks: $\mathbf{X}_0 \stackrel{?}{=} \mathbf{*} \setminus \mathbf{X}_0$ $\mathbf{u}[\mathbf{X}_0] \stackrel{?}{=} 0$ ("is $u_j = 0$ for each $j \in X_0$?") $\mathbf{\Delta}[\mathbf{X}_0] \stackrel{?}{=} 0$ ("is $u_j = v_j$ for each $j \notin X_0$?")</p>
<p>Range check</p> $\mathbf{v} \stackrel{?}{\in} [0, 2^\ell)$	<p>Let $v_j^{(i)}$ denote the i-th bit of v_j, i.e., for each j, $v_j = \sum_i 2^{i-1} v_j^{(i)}$</p> <p>Let $\mathbf{v}^{(i)} := (v_1^{(i)}, \dots, v_m^{(i)})$ for $i \in [\ell]$, with $m := \mathbf{v}$</p> <p>Let $X_0^{(i)} := \{j : v_j^{(i)} = 0\}$ for $i \in [\ell]$ (NB: $v_j^{(i)} = 1$ for all $j \notin X_0^{(i)}$)</p> <p>Prover sends: $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(\ell)}$ $\mathbf{X}_0^{(1)}, \dots, \mathbf{X}_0^{(\ell)}$</p> <p>Verifier defines $\mathbf{\Delta} \leftarrow \sum_i (2^{i-1} \mathbf{v}^{(i)}) - \mathbf{v}$ and then checks: $\mathbf{\Delta}[\mathbf{*}] \stackrel{?}{=} 0$ (equivalent to $\sum_i (2^{i-1} \mathbf{v}^{(i)}) \stackrel{?}{=} \mathbf{v}$) $\mathbf{v}^{(i)} \stackrel{?}{=} \mathbb{1}[\mathbf{X}_0^{(i)} \rightarrow 0]$ for all $i \in [\ell]$ ("are these bits?")</p>
<p>Strict sign check within target subset</p> $\mathbf{v}[\mathbf{X}_>] \stackrel{?}{>} 0$	<p>Let $\mathbf{u}_1 := (\mathbb{1}_{X_>}(1), \dots, \mathbb{1}_{X_>}(m))$, with $m := \mathbf{v}$ (indicator vector for $X_>$)</p> <p>Let \mathbf{u}_{zero} be such that $u_{\text{zero},j} = \begin{cases} v_j & \text{if } j \in X_> \\ 0 & \text{if } j \notin X_> \end{cases}$</p> <p>Prover sends: $\mathbf{u}_1, \mathbf{u}_{\text{zero}}, \mathbf{X}_> := \mathbf{*} \setminus \mathbf{X}_>$</p> <p>Verifier defines $\mathbf{v}_{\geq 0} := \mathbf{u}_{\text{zero}} - \mathbf{u}_1$ and then checks: $\mathbf{u}_1 \stackrel{?}{=} \mathbb{1}[\mathbf{X}_> \rightarrow 0]$ ("is this the indicator vector?") $\mathbf{u}_{\text{zero}} \stackrel{?}{=} \mathbf{v}_{\geq 0} \left[\mathbf{X}_> \rightarrow 0 \right]$ ("does this satisfy the def. of \mathbf{u}_{zero}?") $\mathbf{v}_{\geq 0} \stackrel{?}{\geq} 0 \quad \mathbf{X}_> \stackrel{?}{=} \mathbf{*} \setminus \mathbf{X}_>$</p>

From Idealized to Cryptographic VDBs

- **We commit to handles**
- X \Rightarrow set accumulator
- v \Rightarrow Linear-map vector commitment
- **Accumulators:**
 - $\text{VfySubset}(\text{acc}_X, \text{acc}_Y, \pi_{\text{subset}})$
- **Vector commitments:**
 - $\text{VfySubvec}(\text{cm}_v, X, y, \pi_{\text{subvec}})$



Compilation and Final Construction

Table 5: Compilation of idealized operations through cryptographic building blocks.

Idealized Operation	Cryptographic Implementation
Produce and send new slice handle $\langle v \rangle$	Send $\text{cm}_v \leftarrow \text{LVC.CommitVec}(\text{prk}, v)$
Produce and send new set handle $\langle X \rangle$	Send $\text{acc}_X \leftarrow \text{SA.Accum}(\text{prk}, X)$
$\langle Z \rangle \stackrel{?}{=} \langle X \rangle \cap \langle Y \rangle$	Prover computes $\text{SA.OpenOp}(\text{prk}, X, Y, \cap) \rightarrow (Z, \pi)$. Verifier checks $\text{SA.VerifyOp}(\text{vrk}, \text{acc}_Z, \text{acc}_X, \text{acc}_Y, \cap, \pi)$
$\langle Z \rangle \stackrel{?}{=} \langle X \rangle \cup \langle Y \rangle$	Same as \cap , using \cup operator
$\langle X \rangle \stackrel{?}{\subseteq} \langle Y \rangle$	Prover computes $\text{SA.OpenOp}(\text{prk}, X, Y, \subseteq) \rightarrow \pi$. Verifier checks $\text{SA.VerifyOp}(\text{vrk}, \text{acc}_X, \text{acc}_Y, \subseteq, \pi)$
$\langle u, v \rangle \stackrel{?}{=} y$	Prover computes $\pi \leftarrow \text{LVC.OpenLin}(\text{prk}, u, v, y)$. Verifier checks $\text{LVC.VerifyLin}(\text{vrk}, \text{cm}_u, \text{cm}_v, y, \pi)$
$\langle u \rangle \leftarrow \alpha \langle v \rangle + \langle w \rangle$	Uses homomorphism of LVC
$\langle v \rangle \leftarrow (v_1, \dots, v_n)$	$\text{LVC.CommitVec}(\text{prk}, (v_1, \dots, v_n))$
$\langle u \rangle [\langle X \rangle] \stackrel{?}{=} 0$	Prover computes $\pi \leftarrow \text{LVC.PrvSubvecIsZero}^*(\text{prk}, u, X)$. Verifier checks $\text{LVC.VfySubvecIsZero}^*(\text{vrk}, \text{cm}_u, \text{acc}_X, \pi)$
$\text{data} \leftarrow \text{read}(\langle X \rangle, \langle v \rangle)$	Prover sends X , $\pi \leftarrow \text{LVC.OpenSub}(\text{prk}, C, X, \text{data})$. Verifier checks $\text{LVC.VerifySub}(\text{vrk}, C, X, \text{data}, \pi)$ $\text{acc}_X = \text{SA.Accum}(\text{prk}, X)$

Join queries.

Consider tables T_1, T_2 with respective columns named pk, col_1 and fk, col_2 . As their names suggest pk is primary key of tab referencing values from pk . Consider the que

Q5 : $\text{SELECT * FROM } T_1 \text{ J}$

Pre-processing: as before.

Proof computation: the Prover performs the

- retrieves the set handle $\langle fk \rangle$ referring th each $v \in V_{pk}$.
- retrieves the set handle $\langle pk \rangle$ referring th each $v \in V_{fk}$.
The Prover sends $\langle pk \rangle, \langle fk \rangle$ to the Ver

Proof verification: The Verifier performs the

- compute $\widehat{pk} \leftarrow \text{read}(\langle pk \rangle, pk)$
- compute $\widehat{fk} \leftarrow \text{read}(\langle fk \rangle, fk)$
- check that $\widehat{fk} = \widehat{pk}$
- $\widehat{rst}_1 \leftarrow \text{read}(\langle pk \rangle, T_1.rst)$
- compute $\widehat{rst}_2 \leftarrow \text{read}(\langle fk \rangle, T_2.rst)$

Subsequently, the Verifier concatenates the. To prove that the query result contains all t engage in a protocol similar to the second pa

To join two tables T and T' on equality of tables, we do the following:

Invariant (initially enforced through

- For each table T and column C we keep column

Observation: let $V_{\cap} := V(T, C) \cap V(T'$ be given by the cross product of the rows fro

$$\alpha_i^{-1}(T.C) \times \alpha_i^{-1}(T'.C)$$

Q7 : $\text{SELECT SUM}(col_{tgt}) \text{ FROM } T$

(8)

Pre-processing: as before.

Proof computation:

- the Prover computes the set handle $\langle * \rangle$ corresponding to the rows of T and the value $s_{tgt} = \sum_{v \in col_{tgt}} v$
- The Prover sends $\langle * \rangle$ and s_{tgt} to the Verifier

Proof Verification:

- the Verifier gets $\langle * \rangle$ and s_{tgt} from the Prover
- the Verifier checks that $\sum_{v \in *} v$ is equal to s_{tgt}

Completeness follows from the correctness of the sum check within target subset operation, indeed the prover is sending $\langle * \rangle$ together with u_1 , I.e., the vector that contains all ones, the verifier checks that u_1 is actually one in all positions and then performs the inner product between col_{tgt} and u_1 checking if it is equal to the response. To prove soundness let us assume that there exists an adversarial prover that will cause the verifier to return 1 but such that $\text{SatisfiesQry}(\text{db}, \text{qry}, \text{resp}) = \text{false}$. Therefore resp does not contain the sum of the elements in col_{tgt} . The probability that it happens is negligible indeed the verifier can check that u_1 is a vector of all ones, that $\langle * \rangle$ is indeed a set handle to all indices and that the inner product of the two handles is actually the expected sum.

- COUNT query: consider the query:

Q8 : $\text{SELECT COUNT}(col_{tgt}) \text{ FROM } T$

(9)

Pre-processing: as before.

Proof computation:

- the Prover computes the set handle $\langle * \rangle$ referring to all rows of T
- the Prover sends $\langle * \rangle$ and the value n to the Verifier

Proof Verification: The Verifier performs the following steps:

- get $\langle * \rangle$ and the value n from the Prover,

Zooming in on Efficiency

Q_{Tot}	<pre> SELECT SUM(price) FROM Transaction WHERE account_id = '5938' AND trade_date = '2025-01-01'</pre> <p>↳ Computes total price of transactions executed by an account on a given date</p>
Q_{CntTx}	<pre> SELECT COUNT(*) FROM Transaction WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'</pre> <p>↳ Computes the number of transactions executed within the first quarter</p>
Q_{MatchExp}	<pre> SELECT tx_id, price, expected_price, price = expected_price FROM Transaction WHERE trade_date = '2025-04-05'</pre> <p>↳ Retrieves the transactions whose executed price equals their expected price</p>

Query	Prover Time	Verifier Time	Proof Size
Q_{Tot}	1.21 s	13.00 ms	0.66 KB
Q_{CntTx}	15.59 s	21.81 ms	5.13 KB
Q_{MatchExp}	6.15 s	25.17 ms	0.98 KB

Table 2: Experimental evaluation over queries from Fig. 2 on a DB with 100K rows.

Scheme	Overhead in proof size, Verifier time w/o JOINs	Overhead in proof size, Verifier time w/ JOINs	Preprocessing and server storage
IntegriDB	$\log(\text{cols})$	$ \text{response} * \log \text{cols} $	$ \text{db} * \text{cols} ^2$
vSQL	$\text{polylog} \text{db} $	$\text{polylog} \text{db} $	$ \text{db} $
Qedb	$ \text{query} $	$ \text{response} $	$ \text{db} $

typically, $|\text{resp}| \ll |\text{cols}| \ll |\text{db}|$

Zooming in on Simplicity

- General proof systems

Circuits for SQL

Circuits for STARK recursion

Groth16

FRI and STARK

Parallelizing computations &
Recursion tree logic

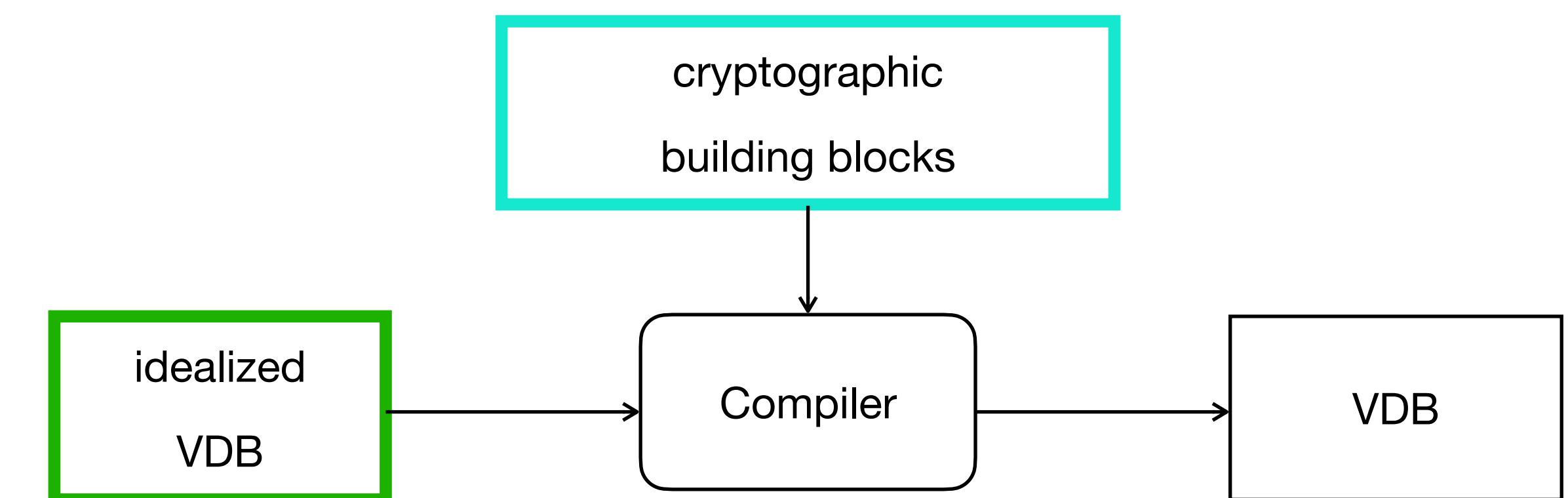
VM

- Qedb

Protocol checks and their
Composition

KZG

also: Modularity



Wrapping Up

- **Simplicity** is important both for real-world security and research progress
- Research on VDBs from authenticated data structures has been stagnant for almost ten years
- **qedb** is a new DB aiming at being:
 - **performant**
 - **simple and modular**
 - **Future work:**
 - Beyond SQL
 - Zero-Knowledge
 - Lookup singularity for VDBs?
 - Formally verified implementation?

<https://eprint.iacr.org/2025/1408>

alberto.trombetta@uninsubria.it alberto@provably.ai