Verifiable Efficient Modular
Databases

Without SNARKSs

Alberto Trombetta (joint work with Vincenzo Botta, Simone Bottoni, Matteo Campanelli, Emanuele Ragnoli)

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
» Qutsourcing them is very common

e This introduces risks:

¢« “AWS, would you give me the response to this query?”
« But how do we know the response is correct?

* Arbitrary faults, malicious behaviour,...

Integrity in Databases

 Databases are at the hearth of our technological infrastructure
» Qutsourcing them is very common

e This introduces risks:

¢« “AWS, would you give me the response to this query?”
« But how do we know the response is correct?

* Arbitrary faults, malicious behaviour,...

Verifiable Databases (VDB)

Are a cryptographic solution to this problem

Further Motivations fo VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

* Pipe dream =~ every data flow from every DB API authenticated through a
verifiable DB

* Analogy: HTTPS. And its ubiquity
* Potential outcome: information flow that is fully certified cryptogrphically

 Even a partial version of the pipe dream might be useful...

Further Motivations fo VDBs

* Implication of Verifiable Databases: not having to trust your DB provider

 Pipe dream = every data flow from every DB API| authenticated through a
verifiable DB

* Analogy: HTTPS. And its ubiquity

* Potential outcome: information flow that is fully certified cryptogrphically

 Even a partial version of the pipe dream might be useful...

* In blockchain settings: € »lagrange

* Providing proofs for aswers from ‘coprocessors '

AXIOM

Further Motivations fo VDBs

* Implication of Verifiable Databases: not having to trust your DB provider
 Pipe dream =~ every data flow from every DB API| authenticated through a verifiable DB

* Analogy: HTTPS. And its ubiquity
* Potential outcome: information flow that is fully certified cryptogrphically
* Even a partial version of the pipe dream might be useful...

* In blockchain settings:

* Providing proofs for aswers from ‘coprocessors’ € >lagrange

O SPACEANDTIME

» Coprocessor sends SomeAnalysis(chain) to the chain

SELECT AVG(...) FROM TXs...
Coprocessor) | smart
result W contract

Verifiable Databases

e during some offline stage

DB, digest(DB)

Server Client

(Prover) Query (Verifier) T

<€

Response,
[

computationally weak client
. not going to store the DB
proof that the response Is correct

Desiderable Features of VDBs

Efficiency-related

 Fast (Prover and Verifier)
* Publicly verifiable

* |mportant to establish trust
levels of data traces

 Non-interactive, with short proofs

* Especially important in smart
contracts

Desiderable Features of VDBs

Efficiency-related Security-related

* Fast (Prover and Verifier) Based on solid cryptographic

assumptions (of course)
* Publicly verifiable

e Simple
* |mportant to establish trust
levels of data traces Easy auditable; easier to reason
about

 Non-interactive, with short proofs

* | ess vulnerable
* Especially important in smart

contracts e More maintainable; easier to
patch

How Do We Build VDBs?

Traditional notions » More fine-grained » Computational
of integrity notions of integrity Integrity
Sighatures, hashes Authenticated data General cryptographic

structures (Merkle trees, ... Proofs

How Do We Build VDBs?

2 VDBs 2
Traditional notions » More fine-grained » Computational
of integrity notions of integrity Integrity
Sighatures, hashes Authenticated data General cryptographic

structures (Merkle trees, ... Proofs

How Do We Build VDBs?

Both approaches are used

They lead to different tradeoofs ? vDBs ?

Traditional notions \ ~ More fine-grained
of integrity notions of integrity

Computational
Integrity

Authenticated data
structures (Merkle trees, ...

Sighatures, hashes General cryptographic

roofs

VDBs as ADSs Queries as examples of
general computations

Security & Simplicity

Landscape of VDBs

~2009-2015: IntegriDB ey
’ ADS
and - mostly - accumulators-based constructions
2025
qedb -
Expressivity General proof

systems and recursion

Practicality

Tradeoffs

General-purpose solutions

e Expressive
o Can be very efficient

* Fast proving time (with the right
number of GPUs and investment)

* Short proof size/small verification cost v

» Sledghammer approach to verifiable
saL K

* Extemely complex stack x

* Suboptimal developer experience x

Tradeoffs

General-purpose solutions Authenticated Data Structures solutions

* Expressive » Simple hash-based authentication and

. Fast proving time (with the right . * Large proof size X
number of GPUs and investment)

| o * Preprocessing and proving IS memory
» Short proof size/small verification cost v intensive x

. glgﬁgh%\mer approach to verifiable . Constrained expressivity x

* Extemely complex stack x

* Suboptimal developer experience x

QEDB First scheme with proof size independent of DB size

* AVDB that is: Generates a proof in seconds on a common laptop
T (For a 1 million row DB)

- No quadratic behavior for JOINs
(through new techniques)

L
» Higly efficient 2"

. . &
* Highly expressive More expressive than other ADS-based approaches

 From simple building blocks No general purpose SNARKs
" Instead: specialized vector commitments

And accumulators

ldealized VDBs o

« SELECT C FROM T WHERE SomeCondition

» \erifier wants to check:
¢ SomeCondition(r) = True < r € X (right rows?)

« Vre X vy, = Clr] (right values?)

ldealized VDBs o

« SELECT C FROM T WHERE SomeCondition

» \erifier wants to check:
¢ SomeCondition(r) = True < r € X (right rows?)

« Vre X vy, = Clr] (right values?)

handle of vector v

* Prover sends ‘pointers’ (handles) to sets and vectors X %

handle of set X

Idealized VDBs e

« SELECT C FROM T WHERE SomeCondition

» \erifier wants to check:
¢ SomeCondition(r) = True < r € X (right rows?)

« Vre X vy, = Clr] (right values?)

handle of vector v

* Prover sends ‘pointers’ (handles) to sets and vectors X %

» Verifier can perform special checks on handles handle of set A

)
for example: read ? (X, ¥ ,u) checks whether vy, = u

If read from v at positions in X do | get u?

erived Checks

Tests where two slices are equal

X0 = eqSet(. v)

i.e., we test:

Xoé{j:ujzvj}

Let X+ = {] Uy = UJ'},X._. = {J Puy < vj}.

Prover sends: X, , X_
Verifier defines ﬂA - u - o and then checks:

That []XO \ 'X+ . UX— partition % (via basic set handle tests)

afon]e o fan]ie -]

Sum check within target subset

Let uy := (1x(1),...,1x(m)), m := |v| (indicator vector for X)

Prover sends: uy , X = o \ X

Verifier checks:
w1 = L [,)_(— 0] (“is it the indicator vector?”)
< o er > - y (checks actual sum)

ok | = |58\ [oX

“Nullifying” test

e = 4 [OXO —»0]

ie,Vjiu; =v; - (1—1x,(7))

Prover sends: Xy = #* \ Xo

Verifier defines [IA - @ - and then checks:
-:)Xo = o \ oXo
| oXo =0 (“is u; =0 for each j € X ?")

7a oXo =0 (“is u; = v; for each j & Xo?”)

Pre-image check

oxo ;a_l(]v)

where:

a '(v):={j:v;=a},a€F

Verifier defines o =« ﬂl and checks:

= = eqSet(Mo+)

Range check

© € (0,29

Let vgi) denote the i-th bit of v;, i.e., for each j, v; = >, 2i_l'v;i)

Let v'") := (vii), e .-‘US,:)) for i € [£], with m := |v]
Let X" :={j:v}" =0} fori € [€] (NB: v’ =1 forallj¢X;")
Prover sends:

l.v(l) e l]t,(f)

1 ¢
ox(g]""f-r (())
Verifier defines [IA < Z(T‘l ﬂv(i)) - and then checks:
A [o] =0 (equivalent to Z(Zi_lv(i)) = v)

rv(i) e 1 [éi) — 0] for all i € [£] (“are these bits?”)

Strict sign check within

target subset

I [QX>];()

Let u; := (1x_(1),...,1x_(m)),

with m := |v| (indicator vector for X-)

Let Uzero be such that Uzero,j = { ‘
' 0 ifje&X.

Prover sends:

ur , [Uzero , (_)2> = oF \ ox>

Verifier defines P20 = fUzero — U1 and then checks:
1 = p [,_.,X> — 0] (“is this the indicator vector?”)
Yzero = v [oXs — ()] (“does this satisfy the def. of W.ere 7")

Y=o 20 o)—(> = o \ oX>

From ldealized to Cryptographic VDBs

« We commit to handles K2G
(or other polynomial commitments)
. X = set accumulator l
« ¥V = Linear-map vector commitment Linear-map VC | Tests on | et Aceumuiators
: (u, v) 2 y accumulated sets XCY XuY L / .
e Accumulators: l)

« VfySubset(accy, accy, 7, ;... Cryplograpnie

building blocks

 Vector commitments: l"‘p““‘)
Idealized iInput to ! Compiler)

> > VDB
 VfySubvec(cm,, X, V, 7T 1 00) VDB K y

Compilation and Final Construction

Table 5: Compilation of idealized operations through cryptographic building blocks.

Idealized Operation

Cryptographic Implementation

Produce and send new slice handle v

Produce and send new set handle X

A = X N Y

X C Y

(u, p)=y

fv (—(Ul,...,vn)

X]=0

data +read(X , w)

Send cmy + LVC.CommitVec(prk, v)

Send accx « SA.Accum(prk, X)

Prover computes
SA.OpenOp(prk, X,Y,N) — (Z,).
Verifier checks

SA .VerifyOp(vrk, accz, accx,accy, N,)

Same as N, using U operator

Prover computes
SA.OpenOp(prk, X,Y,C) = 7
Verifier checks

SA .VerifyOp(vrk, accx, accy, C,)

Prover computes

7 ¢ LVC.OpenLin(prk, u, v, y)
Verifier checks
LVC.VerifyLin(vrk, cm,,, cm,,, y, 7)

Uses homomorphism of LVC
LVC.CommitVec(prk, (v1,...,vn))

Prover computes
7 ¢~ LVC.PrvSubveclsZero® (prk, u, X)

Verifier checks

LVC.VfySubveclsZero® (vrk,cm,,,accx,)

Prover sends X,

7 ¢— LVC.OpenSub(prk, C, X, data)
Verifier checks

LVC.VerifySub(vrk, C, X, data, 7)
accy = SA.Accum(prk, X)

Join queries.

Consider tables T3, T, with respective columns named pk, col, and fk, col,. As

their names suggest pk is primary key of tab
referencing values from pk. Consider the que

Q5: SELECT «* FROMT:J

Pre-processing: as before.
Proof computation: the Prover performs the
— retrieves the set handle fk referring th
each v € V.
— retrieves the set handle —pk referring th
each v € Vyp.
The Prover sends pk, ~fk to the Ver
Proof verification: The Verifier performs the
~ compute ;E « read(opk , pk)

~ compute fk « read(ofk , fk)

~ check that ﬁc = {)E
- rst; < read(pk , [Ti.rst)

~ compute rst, « read(5fk , f2.rst)

Subsequently, the Verifier concatenates the |
To prove that the query result contains all t
engage in a protocol similar to the second p:
To join two tables T and T’ on equality o
tables, we do the following:
Invariant (initially enforced throug}l
~ For each table T' and column C we ket
column
Observation: let Vi :=V(T,C)NnV(T
be given by the cross product of the rows frc

a; ' (T.C) x a; 1(T'.C) :

Q7: SELECT SUM(col,,) FROMT (8)

Pre-processing: as before.
Proof computation.:
— the Prover computes the set handle _* corresponding to the rows of T’
and the value s;0¢ = > v
veEcol; ¢
— The Prover sends _* and s;, to the Verifier

Proof Verification:
— the Verifier gets _* and s;4; from the Prover

— the Verifier checks that) "tgt is equal to s;4

O*

Completeness follows from the correctness of the sum check within target
subset operation, indeed the prover is sending _* together with uy, Le.,

the vector that contains all ones, the verifier checks that w; is actually one
in all positions and then performs the inner product between col;y; and u;
checking if it is equal to the response. To prove soundness let us assume
that there exists an adversarial prover that will cause the verifier to return
1 but such that SatisfiesQry (db, qry, resp) = false. Therefore resp does not
contain the sum of the elements in col;y:. The probability that it happens is
negligible indeed the verifier can check that w; is a vector of all ones, that

~* is indeed a set handle to all indices and that the the inner product of

the two handles is actually the expected sum.
COUNT query: consider the query:

Q8: SELECT COUNT(col;s) FROMT (9)

Pre-processing: as before.
Proof computation.:
— the Prover computes the set handle _* referring to all rows of T’

— the Prover sends _* and the value n to the Verifier

Proof Verification: The Verifier performs the following steps:
~ get * and the value n from the Prover,

Zooming in on Efficiency

(J Tot }

(JCnth } ’

CJMatchExp

SELECT SUM(price) FROM Transaction
WHERE account_id = '5938' AND trade_date = '2025-01-01"

. Computes total price of transactions executed by an account on a given date

SELECT COUNT(*) FROM Transaction
WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31"'

T Computes the number of transactions executed within the first quarter

SELECT tx_id, price, expected_price, price = expected_price
FROM Transaction WHERE trade_date = '2025-04-05'

T Retrieves the transactions whose executed price equals their expected price

Query Prover Time Verifier Time Proof Size
Q ot 1.21 s 13.00 ms 0.66 KB
QcneTx 15.59 s 21.81 ms 5.13 KB

(QMatchExp 6.15 s 25.17 ms 0.98 KB

Table 2: Experimental evaluation over queries from Fig. Eon a DB with 100K rows.

Scheme Overhead in proof size, Overhead in proof size, Preprocessing and server
Verifier time w/o JOINs Verifier time w/ JOINs storage
IntegriDB log(cols) Iresponse| * log|cols| |db| * |cols|?
vSQL polylog|db| polylog|db| |db|
Qedb lquery] Iresponse| |db|

typically, [resp| << |cols| << |db|

Zooming in on Simplicity

e General proof systems * Qedb

Gircuits for SQL
Gircuits for STARK recursion
Groth16 FRI and STARK kzG

- cryptographic
building blocks

Idealized

VDB

Compiler > VDB
\ Y

Wrapping Up

* Simplicity is important both for real-world security and research progress

* Research on VDBs from authenticated data structures has been stagnant for almost ten years
* gedb is a new DB aiming at being:
* performant
* simple and modular
* Future work:
* Beyond SQL
* Zero-Knowledge
* Lookup singularity for VDBs?
* Formally verified implementation?
https://eprint.iacr.org/2025/1408

alberto.trombetta@uninsubria.it alberto@provably.al

mailto:alberto.trombetta@uninsubria.it
mailto:alberto@provably.ai

