
Alberto Trombetta (joint work with Vincenzo Botta, Simone Bottoni, Matteo Campanelli, Emanuele Ragnoli)

Verifiable Efficient Modular 
Databases
Without SNARKs



Integrity in Databases
• Databases are at the hearth of our technological infrastructure


• Outsourcing them is very common


• This introduces risks:


• “AWS, would you give me the response to this query?”


• But how do we know the response is correct? 

• Arbitrary faults, malicious behaviour,…



Integrity in Databases
• Databases are at the hearth of our technological infrastructure


• Outsourcing them is very common


• This introduces risks:


• “AWS, would you give me the response to this query?”


• But how do we know the response is correct? 

• Arbitrary faults, malicious behaviour,…

Verifiable Databases (VDB) 

Are a cryptographic solution to this problem



Further Motivations fo VDBs
• Implication of Verifiable Databases: not having to trust your DB provider


• Pipe dream  every data flow from every DB API authenticated through a 
verifiable DB


• Analogy: HTTPS. And its ubiquity


• Potential outcome: information flow that is fully certified cryptogrphically


• Even a partial version of the pipe dream might be useful…

≈



Further Motivations fo VDBs
• Implication of Verifiable Databases: not having to trust your DB provider


• Pipe dream  every data flow from every DB API authenticated through a 
verifiable DB


• Analogy: HTTPS. And its ubiquity


• Potential outcome: information flow that is fully certified cryptogrphically


• Even a partial version of the pipe dream might be useful…


• In blockchain settings:


• Providing proofs for aswers from ‘coprocessors’

≈



Further Motivations fo VDBs
• Implication of Verifiable Databases: not having to trust your DB provider


• Pipe dream  every data flow from every DB API authenticated through a verifiable DB


• Analogy: HTTPS. And its ubiquity


• Potential outcome: information flow that is fully certified cryptogrphically


• Even a partial version of the pipe dream might be useful…


• In blockchain settings:


• Providing proofs for aswers from ‘coprocessors’


• Coprocessor sends SomeAnalysis(chain) to the chain

≈

smart 
contractCoprocessor

SELECT AVG(…) FROM TXs…

result



Verifiable Databases

Server 
(Prover)

Client 
(Verifier)

DB, digest(DB)

Query

Response, π

during some offline stage

proof that the response is correct

computationally weak client

not going to store the DB



Desiderable Features of VDBs
Efficiency-related 

• Fast (Prover and Verifier)


• Publicly verifiable


• Important to establish trust 
levels of data traces


• Non-interactive, with short proofs


• Especially important in smart 
contracts 



Desiderable Features of VDBs
Efficiency-related 

• Fast (Prover and Verifier)


• Publicly verifiable


• Important to establish trust 
levels of data traces


• Non-interactive, with short proofs


• Especially important in smart 
contracts 

Security-related 

• Based on solid cryptographic 
assumptions (of course)


• Simple


• Easy auditable; easier to reason 
about


• Less vulnerable


• More maintainable; easier to 
patch



How Do We Build VDBs?

Traditional notions

of integrity

More fine-grained

notions of integrity

Computational

Integrity

Signatures, hashes Authenticated data 
structures (Merkle trees, …)

General cryptographic 
Proofs



How Do We Build VDBs?

Traditional notions

of integrity

More fine-grained

notions of integrity

Computational

Integrity

Signatures, hashes Authenticated data 
structures (Merkle trees, …)

General cryptographic 
Proofs

VDBs? ?



How Do We Build VDBs?

Traditional notions

of integrity

More fine-grained

notions of integrity

Computational

Integrity

Signatures, hashes Authenticated data 
structures (Merkle trees, …)

General cryptographic 
Proofs

VDBs? ?

VDBs as ADSs Queries as examples of

general computations

Both approaches are used

They lead to different tradeoofs



Landscape of VDBs

Expressivity

Security & Simplicity

Practicality

ADS

General proof 
systems and recursion

qedb

2009-2015: IntegriDB 

and - mostly - accumulators-based constructions

∼

20252017: vSQL

2023-2025: Lagrange Labs, Axiom,… 



Tradeoffs
General-purpose solutions 

• Expressive 


• Can be very efficient


• Fast proving time (with the right 
number of GPUs and investment)


• Short proof size/small verification cost


• Sledghammer approach to verifiable 
SQL


• Extemely complex stack


• Suboptimal developer experience



Tradeoffs
General-purpose solutions 

• Expressive 


• Can be very efficient


• Fast proving time (with the right 
number of GPUs and investment)


• Short proof size/small verification cost


• Sledghammer approach to verifiable 
SQL


• Extemely complex stack


• Suboptimal developer experience

Authenticated Data Structures solutions 

• Simple hash-based authentication and 
modern accumulators


• Large proof size


• Preprocessing and proving is memory 
intensive


• Constrained expressivity



QEDB
• A VDB that is:


• Higly efficient


• Highly expressive


• From simple building blocks

First scheme with proof size independent of DB size

Generates a proof in seconds on a common laptop

(For a 1 million row DB)

No quadratic behavior for JOINs 

(through new techniques)

More expressive than other ADS-based approaches

No general purpose SNARKs 
Instead: specialized vector commitments 

And accumulators



Idealized VDBs
• SELECT C FROM T WHERE SomeCondition


• Verifier wants to check:


• SomeCondition( ) = True   (right rows?)


•      (right values?)

r ⟺ r ∈ X

∀r ∈ X yr = C[r]

C

: claimed list of relevant rows from CX

: claimed values of C at rows in (yr)r∈X
X

Response:



Idealized VDBs
• SELECT C FROM T WHERE SomeCondition


• Verifier wants to check:


• SomeCondition( ) = True   (right rows?)


•      (right values?)


• Prover sends ‘pointers’ (handles) to sets and vectors

r ⟺ r ∈ X

∀r ∈ X yr = C[r]

C

: claimed list of relevant rows from CX

: claimed values of C at rows in (yr)r∈X
X

Response:

X v
handle of set X

handle of vector v



Idealized VDBs
• SELECT C FROM T WHERE SomeCondition


• Verifier wants to check:


• SomeCondition( ) = True   (right rows?)


•      (right values?)


• Prover sends ‘pointers’ (handles) to sets and vectors


• Verifier can perform special checks on handles


for example:     ,    , ) checks whether 

r ⟺ r ∈ X

∀r ∈ X yr = C[r]

read?( u vX
?= u

C

: claimed list of relevant rows from CX

: claimed values of C at rows in (yr)r∈X
X

Response:

X v
handle of set X

handle of vector v

X v

If read from  at positions in  do I get ?v X u



Derived Checks



From Idealized to Cryptographic VDBs
• We commit to handles 

•       set accumulator


•       Linear-map vector commitment


• Accumulators:


• VfySubset(acc , acc , )


• Vector commitments:


• VfySubvec(cm , , )

⇒

⇒

X Y πsubset

v X, y πsubvec

KZG


(or other polynomial commitments)

Linear-map VC


⟨u, v⟩ ?= y

Set Accumulators


, X
?
⊆ Y X ∪ Y ?= Z

Tests on


accumulated sets

cryptographic


building blocks

idealized 


VDB

input to

input to

Compiler VDB

X

v



Compilation and Final Construction



Zooming in on Efficiency

Scheme Overhead in proof size, 
Verifier time w/o JOINs

Overhead in proof size, 
Verifier time w/ JOINs

Preprocessing and server 
storage

IntegriDB log(|cols|)


0

|response| * log|cols| |db| * |cols|2 

vSQL polylog|db| polylog|db| |db|

Qedb |query| |response| |db|

typically, |resp| << |cols| << |db|



Zooming in on Simplicity
• General proof systems

Circuits for SQL

Circuits for STARK recursion
Groth16 FRI and STARK

Parallelizing computations &

Recursion tree logic

VM

• Qedb

Protocol checks and their

Composition

KZG

also: Modularity

idealized 


VDB
Compiler VDB

cryptographic


building blocks



Wrapping Up
• Simplicity is important both for real-world security and research progress


• Research on VDBs from authenticated data structures has been stagnant for almost ten years


• qedb is a new DB aiming at being:


• performant 

• simple and modular


• Future work:


• Beyond SQL


• Zero-Knowledge 


• Lookup singularity for VDBs?


• Formally verified implementation?

https://eprint.iacr.org/2025/1408 

alberto.trombetta@uninsubria.it   alberto@provably.ai

mailto:alberto.trombetta@uninsubria.it
mailto:alberto@provably.ai

